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Problem Definition

LT-DS

How to Estimate the Loss Across Different Category Distributions?

How to Achieve Unbiased Visual Representation?

How to Augment the Feature Representation of Tail Classes?

And? Simulate Domain Shifts During Training
We estimate the empirical loss on the testing domain under LT-DS problem.

!

"# $

%

"&#

' (# ' () #

$# $&#	+,
Sampled Batch 

EMA

Visual Feature
Prototype Semantic Feature

ℒ"#$ ℒ$#$ ℒ$#"

!"

#
!$

instances

visual prototypes

semantic features 

∑ ∑′

∑

∑′

∑

∑′
Semantic Similarity

Distribution-Balanced Classification Loss

Augment the diversity of tail classes by head classesb
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Visual-Semantic Alignment

Semantic-Similarity Guided Augmentation

Meta Learning Framework

Quantitative Results

Top-5 Retrieval

Five Different Styles by off-the-shelf
style-transfer modelsc; One style
randomly picked for each sample

Resampling (AWA2-LTS) or Existing
Long-Tailed Dataset (ImageNet-LTS)

Domain-Distribution Calibrated LossOriginal Softmax based Cross-Entropy Loss

Applying semantic feature to learn unbiased representations 

Align loss from different domains to a unified balanced distributiona
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• Select top-K most 
similar classes

• Weighted update 
the class-wise 
feature covariance

• Extract semantic embeddings based 
on class descriptors or word 
embeddings.

• Online build class-wise domain-wise
feature prototypes.

• Perform mutual visual-semantic 
alignment.

a Ren et al., Balanced Meta Softmax, NeurIPS 2020. b Wang et al., Implicit Augmentation, NeurIPS 2019. c CycleGAN and Cartoon GAN.

LT and DS have not yet been investigated together.


